Convex invertible cones and positive real analytic functions
نویسندگان
چکیده
منابع مشابه
Ela Analytic Roots of Invertible Matrix Functions∗
Various conditions are developed that guarantee existence of analytic roots of a given analytic matrix function with invertible values defined on a simply connected domain.
متن کاملSome properties of analytic functions related with bounded positive real part
In this paper, we define new subclass of analytic functions related with bounded positive real part, and coefficients estimates, duality and neighborhood are considered.
متن کاملAnalytic roots of invertible matrix functions
Various conditions are developed that guarantee existence of analytic roots of a given analytic matrix function with invertible values defined on a simply connected domain.
متن کاملConvex Cones in Finite - Dimensional Real Vector
Various classes of nite-dimensional closed convex cones are studied. Equivalent characterizations of pointed cones, pyramids and rational pyramids are given. Special class of regular cones, corresponding to \continuous linear" quasiorderings of integer vectors is introduced and equivalently characterized. It comprehends both pointed cones and rational pyramids. Two diierent ways of determining ...
متن کاملPositive and Z-operators on closed convex cones
Let K be a closed convex cone with dual K∗ in a finite-dimensional real Hilbert space V . A positive operator on K is a linear operator L on V such that L (K) ⊆ K. Positive operators generalize the nonnegative matrices and are essential to the Perron-Frobenius theory. We say that L is a Z-operator on K if 〈L (x), s〉 ≤ 0 for all (x, s) ∈ K ×K such that 〈x, s〉 = 0. The Z-operators are generalizat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2007
ISSN: 0024-3795
DOI: 10.1016/j.laa.2007.04.023